(lntel) _
eeeeeeeeee
what’s inside”

INTEL" ADVISOR

Ad

VECTORIZATION ADVISOR

Get Faster Code Faster! Intel® Advisor

Vectorization Optimization

Have you:

= Recompiled for AVX2 with little gain
= Wondered where to vectorize?

» Recoded intrinsics for new arch.?

= Struggled with compiler reports?

x Survey Report
| Elapsed time: 54445 ‘ | Vectotized | | Mot Vectorized |

FILTER: | &)l Modules ¥ Al Sources v

Data Driven Vectorization:

New!

What vectorization will pay off most?

What's blocking vectorization? Why?

Are my loops vector friendly?

Will reorganizing data increase performance?
Is it safe to just use pragma simd?

"Intel® Advisor's Vectorization Advisor
= permitted me to focus my work where it really

mattered. When you have only a limited
amount of time to spend on optimization, it is

3

Function Call Sites and Loop & | O Wector lssues TSire'rLfev %O';a; E!’:nf Loop Type | Why Mo Vectarization?
0 [loop at stl_algo.hd 7400, O 017051 017051 Scalar & non-vectorizable | ...
EE [loop at loopstl.cpp:2449,. ¢ 2 Ineffective peeled.. 017051 017051 144 Collapse Collapse

2[00 [loop at loopstl.cpp2.. | [] 015051 015051 12 Wectarized (B

12O [loop at loopstl.cpp., | [] 0.020s 1 0.02051 4 Rernainder
20O [loop at loopstl.cpp:7800,, [] 017051 017051 500 Scalar B wectarization possi...

[loop at loopstl.cpp:35... ‘¢ 1 High vector regi.. 0.160s| 0.160s| 12 Expand Expand
<

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

invaluable."

Gilles Civario
Senior Software Architect
Irish Centre for High-End Computing

The Right Data At Your Fingertips e

Get all the data you need for high impact vectorization

Filter by which loops

il Cauie What prevents

are vectorized! vectorization?
™| Where shou, vectorization and/or threading parallelism? \ Intel Advisor XE 2016
Refinernent Reports & Annotation Report | abilit; iort
Elapsed time: 54.44s | | ‘ectorized Mot Vectorized FILTER: | Al Modules Sources Q
Trip Wectorized Loops 2
Function Call Sites and Loops & | @ Vector lssues Self Tirnew | Total Time C Loop Type Why Mo Vectarization? —
ounts Vecto...| Efficiency |Vect0r L.
30 [loop at stl_algo.hed 740 in stdvte .. [017051 01701 Scalar & non-vectarizable loop ins ...
EE [loop atjoopstl.cppi2449in 5234] @ 2 Imeffective peeledfrern .. 017051 0170s1 124 Collapse Collapse AN 4
iU [loof at loopstl.cppr2dd@in s .. [] 015051 0.150:1 12 Wectorized (Body) A 4
1O [logl at loopstl.cpp:2449in s .. [] 0.0205 | 0.020s1 4 Rernainder
35O [loog loapstl.cpp: 7900 in wvas_] | [] 0170s 1 0170s1 500 Scalar B vectorization possible but... 4
loopstl.cpp:3500 in 52... % 1High vector register ... 0.160s | 0.160s| 12 Expand Expand AYX 8
loapstl.cpp:3891 in 5279] ¥ 2 Ineffective peeledfrem., 0.150s 015051 1254 Expand Expand B
loopsthcppi62dS in s414_] 015051 015051 12 Expand Expand
i st_nurmeric.hi247 inostd ¥ 1Assurned dependency.. 015051 0.150s1 49 Scalar & vector dependence preve v

Focus on What vectorization Which Vector instructions How efficient

hot loops issues do | have? are being used? is the code?

Get Faster Code Faster!

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

4 Steps to Efficient Vectorization

Intel® Advisor — Vectorization Advisor

1. Compiler diagnostics + Performance 2. Guidance: detect problem and
Data + SIMD efficiency information recommend how to fix it

& PAl |ssue: Peeled/Remainder loop(s) present
SfF Total Compiler Vectorization @ 8 All or some source loop iterations are not executing in the kernel loop. Improve performance by moving

Function Call Sites and Loopsa. source loop iterations from peeled/remainder loops to the kernel loop. Read more at Vector Essentials,

Time Time Loop Type Wby Mo Vectoriztion? Utilizing Full Vec
ap in unCFarallLambdal aaps] 1,145 00845 [Scalar vactor dependence prevents vectar . Recommendation: Align memory access
[#[loop in mnCForallLambdal oaps] 01405 37445 [] Scalar inner loop was already vectotized Projected maximum performance gain: High

Projection confidence: Medium

The compiler created a peeled loop because one of the memory accesses in the source loop does not
start at a data boundary. Align the memory access and tell the compiler your memory access is aligned.
Peeled loop; loop stuts were reordered This example aligns memory using a 32-byte boundary.

BV [loop in std:: Complex_base <double,struct C_double complex>:i... | 0.031s 0.0315 B Vectorized (Body)

Vectorized S3E; S%E2 loop processing Float32; Floatf4 data type(s) having Divisions; Square Roots operations

op in stdsbasic_string <chan,struct steuchar_traits<chars,class stdallo,. 00005 5440, [] Scalar nonstandard loop is not 3 vectoriza . O aeer
op in stdzbasic_string <char,struct stdzchar_traits echarx,class stdzallo.. 0000 5440.., [Scalar nonstandard loop is not avectoriza ., array = (float *)_sm_malloc(ARRAY_S:
(#l{loop in std:num_put<char,class stozostreambuf iterator<chanstruct st 0.0005 02345 [] Scalar nanstandard loop is not a vectoriza ., // Somewhere else

__assume_aligned(array, 32);
/7 Use array in loop

eof (float), 32);

3. Loop-Carried Dependency Analysis 4. Memory Access Patterns Analysis

Site Name Site Function Site Info Loop-Carried Dependencies Strides Distribution Access Pattern
loop_site 203 runCRawloops runCRawloops.coc1063 @ RAW:L No information ble No information available
loop_site 139 runCRawlLoops runCRawlLoops.coc622 No information available F39%736% / 2T Mixed strides

D @ Type Site Name Sources Modules State loop_site 160 runCRawLoops runCRawloops.0oc925 No information available 100%/0%/0% | All unit strides

P @ Parallel site information site2 dqtest2.cpp dgtest2 o Nota problem | oo acces: pattems

P2 @ Read after wiite dependency site2 dgtest2.cpp dotest2 R Mew D ® Stidew Type Source Modules Alignment

P3 @ Read after wite dependency site2 dqtest2.cpp dqtest2 Re Mew P2 @ 001 Unk stiide tunCRawl.oops.co5d | icals ere

m ! |Write after write dependency | site2 datest2.cpp datest2 | ! \New

P53 @ Wiite after wiite dependency site2 dgtest2.cpp dqtest2 Re Mew

P6 @ Wiite after read dependency site2 dotest2.cpp dqtest2 Re Mew av5] @ Jo0 ok e nCRaatoiR el | abim

P7 @ \Write after read dependency site2 dqtest2.cpp: idle.h dqtest2 Re Mew SP30 @ 1575 -63; -26; -25; -1 0;1; 25; 26; 63; 2164801 Variable stride runCRawLoops.coc628 _lcals.exe

pUp] (2] += b(31][41]:

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

F
Time Time

orallL

.

Is Most Execution in the Fast Part of the Vector?

Intel Advisor shows you

= are should | add vectorization and/o aading paralle -

z Survey Report

| Elapsed time: 8,525 | | Vectorized | | Mot Vectorized | FILTER: | All Modules ¥ | |All Sources v
Function Call Sites and Loops & | @ Vectorlssues Self Timew Total Time Loop Type Why Ne
P pive Vectorization?
=Y loop at fractal.cpp:179 in <lambdai>:op... '¢' 4 High vector ... 0,013sl 12,020s @ Collapse Collapse
(2] [loop at fractal.cpp:179 in <lambdal> . ® Serialized use.... 0,013s1 11,281s 1 | Vectorized (Body)
i+ [loop at fractal.cpp179 in <lambdal>:o .. g 2 Data type co .. 0,000z 1 0,163=1 Peeled
i+ [loop at fractal.cpp:179 in <lambdal=zo0... ‘¢ 2 Data type co.. 0,000s1 0,576s0 Remnainder
1> [loop at fractal.cpp: 177 in <lambdal=uoper.. [| '@ 2 Datatypeco.. 0,010s1 12,030s SN | Scalar
<
Line | Source Total Time % Loop Time %
163 B for (int x = x0; X < x1; ++x) | 10.822s B

[loop at fractal.cpp:163 in <lambdal>::operator()]
Scalar Loop. Not vectorized: outer loop was not auto-vectorized: consider usg
No loop transformations were applied

164 B for (int ¥ = ¥0; ¥ < wl; ++y) { 10,8225 =
[loop at fractal.cpp:l164 in <lambdal>::operator()]
Scalar Loop. Not vectorized: wectorization possible but seems inefficient. Us

Loop was unrolled by 2

fractal data array[x - x0][y - y0] = calc_one_pizel(x, ¥, 10.822s (O

167 }

168 for (int v = ¥0, v_temp = 0; ¥ < yl; ++y, ++y_temp) |

169 area.set_pos(0, v - y0);

170 for (int x = x0, x temp = 0; x < xl; ++x, +tx_temp) {
17 area.put_pixel (fractal_data array[x_temp] [y_temp]):
172 }

S— - 0.196s |
Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of oth

Vector Efficiency: All The Data In One Place

My “performance thermometer” Flapsed time: 8,05
Loops = - - : : Self Time
Vectnu!Ef'fmench !Estlmated Gain “u’ect...‘Co Traits ‘ ector Widths
loop at IbpSUB.cop:1280 in fPropagations .. AV [13% | |053 l 4 0,53 TBTends; Bracts, Inserts, Ghumles 128/256 2312
[loop at IbpGET.cppd52 in fGetFracsite] A | 30% |238 8 234 Blends; Inserts; Masked Stores 11281256 0,030s]
[loop at bpGET.cpp:d2 in fGetOneMassSite] AVX | 36% |2,86 8 279 256 0,100z
[loop at IbpGET.cpp:78 in fGetTotMassSite] AVK | 35% |2,86 8 219 256 0,010s]
[loop at IbpGET.cpp334 in fGetOnelirecSp.. AVX [85 3,05 g 297 Type Conversions 128/256 00115]
iU [loop at IbpBGK.cpp:340 in fCollisionBGK] AVX | 100% | |2,t]5 2 205 128 0,080z
4

* Auto-vectorization: affected <3% of code
* With moderate speed-ups
* First attempt to simply put #pragma simd:
* Introduced slow-down
Achieved Original (scalar) Upper bound: < Look at Vector Issues and Traits to find out why
Efficiency code efficiency. 100% « All kinds of “memory manipulations”

13%

Corresponds efficigncy * Usually an indication of “bad” access pattern
to 1x speed-up. 4x gain
(VL=4)

Survey: Find out if your code is “under vectorized” and why

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

2. Guidance: detect problem and
recommend how to fix it

Zﬁ Pl |ssue: Peeled/Remainder loop(s) present

All or some source loop iterations are not executing in the kernel loop. Improve performance by moving

@ 8 source loop
|

Recommendation: Align memory access

Projected maximum performance gain: High
Projection confidence: Medium

The compiler created a peeled loop because one of the memory accesses in the source loop does not
start at a data boundary. Align the memory access and tell the compiler your memory access is aligned.
This example aligns memory using a 32-byte boundary

float *arra
array (fl

// Somewher
__assume_al
Use array in loop

Get Specific Advice For Improving Vectorization

Intel® Advisor — Vectorization Advisor

8 Where should | add vectorization and/or threading parallelism?
Summary % Survey Report i

Refinement Reports

Intel Advisor XE 2016
& Annotation Report | Suitability Report
Elapsed tirme: 8,815 | | Vectorized Mot Vectorized

FILTER: |All Modules

¥ | | All Sources v Q
Vectorized Loops 2
Function Call Sites and Loops & | Q@ Vectorlssues Self Timew Total Time Loop Type | Why Mo Vecterization? .
N) ‘u‘ecto...l Estim... |‘u‘ector Len
morreermees (Click to see recommendation 11,460 @B Scalar
i+ (O [loop at arena.cpp:88 in thb:tbb:]
=W [loop at fractal.cpp:179 in <lambda1>:op....

11,460 BB Scalar
® 5 Ineffective ...

1+ [loop at fractal.cpp:179in <lambdal>ze.. [| @ 2Datatype co..

0,000 | 202250

Remainder

‘¢ Recommendations | ©

Issue: Ineffective peeled/remainder loop(s) present

]
All or some source loop iterations are not executing in the loop body. Improve performance by moving source loop iterations from
peeled/remainder loops to the loop body.

(>) Disable unrolling

The trip count after loop unrolling is too small compared to| Advisor ShOWS h|nts t0o move
factor using a directive.

ICL/ICC/ICPC Directive | IFORT Directive

#pragma nounroll IDIRS NOUNROLL
#pragma unroll IDIRS UNROLL

nroll

iterations to vector body.

Read More:

e User and Reference Guide for the Intel C++ Compiler 15.0 > Compiler Reference > Pragmas > Intel-specific Pragma
Reference > unroll/nounroll.

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Critical Data Made Easy Knowing the time

. spentin a loop is not
Loop Trip Counts ' :

« [Where should | add vectorization and/or threading parallelis—~ Intel Advisor XE 2016

Summary MSur\.rey {S:LL M # Refinement Reports & Annotation Report s suitability Repo

| Program time: 12825 | | Vectorized | | Mot Vectorized | | All Modules ¥ | All Sources v =
— Trip Counts Compiler Vectorization
Function Call Sites and Loops Self Timew | Total Time [] @) : T
Median | Min | Mazx | Call Count Loop Type Why No Vectorizatiol

= [loop at Multiply.c:53 in matvec] 11.203: 0 11.29%: 0@ @1 Collapse Collapse
i+ [[loop at Multiply.c:33 in matvec] 11.851:@8 11.851-mm [] @1 1M 10 101 12000000 Vectorized (Body) vector dependence p
1+ [loop at Multiply.c:33 in matvec] 0.047s1 0.047s1 | 3 3 3 1000000 Vectorized (Body)

i [loop at Multiply.c:33 in matvec] 0.413s1 0.413s1] 10 101 101 2000000 Scalar

BV [loop at Multiply.c:45 in matvec] 12.373s) "1

i:[loop at Driver.c:146 in main] 0.016s1 12483 @@ [] &1 1000000 Scalar gctor dependence p

Loop is iterating Since the loop is
1.1 Find Trip Counts Check 101 times but called so many

Find how rr1an'_-.-'iiéati-:|r1s.are executed, actual trlp Called > m||.l|0n t|mes |t WOUld be
- counts Wi a big win if we

Command Line can get |t tO

vectorize.

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

3. Loop-Carried Dependency Analysis

Site Name Sources Modules State
Parallel site information site2 dgtest2.c dgtest2 Not a problem
Read after write dependency site2 dgtest2.c dqtest2 Re Mew
Read after write dependency site2 dgtest2
@ Wiite after wiite dependency site2 datest2.cpp
@ Wiite after read dependency site2 dgte dotest2
@ Write after read dependency site2 datest2.cpp: idle.h dgtest2 R Mew

Is It Safe to Vectorize?

Loop-carried dependencies analysis verifies correctness

« % Where should | add vectorization and/or threading parallelism? B Intel Advisor XE 201¢
Summary m SIS 7 Refinement Reports & Annotation Report i Suitability Report
| Program time: 12.82s | | Wectorized | | Mot Vectorized | FILTER: | All Modules v | All Sources v =
Compiler Vectorization
Function Call Sites and Loops Self Timew | Total Time [@ | Trip Counts —
Loop Type Why No Vectornization?

i+ [loop at Multiply.c:53 in matvec] 0.047s | 0.047s | O 3 Vectorized (Body)
i:[loop at Multiply.c:33 in matvec] 0.413s| 0.413s|] i Scalar
= [loep at Multiply.c:45 in matvec] 0.100s| 12.373s W1 Cellapse Collapse

i+ [loop at Multiply.c:43 in matvec] 0,078z 11.830:mm [12 WVectorized (Body)

i*[loop at Multiply.c:45 in matvec] 0.031s| 0.444s|] 2 Remainder

[loop at Driver.c:146 in main] 0.016s| 12.483s1 vector dependence prevents vectoriza...

Select loop for
21 C-IT eck Correctness . . C orre Ct
Identify and -carried dependencies

for marked loops. Fix the reported problems. AnalyS|S and
press play!

Vector Dependence
prevents

Vectorization!

Command Line

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Correctness - Is It Safe to Vectorize?

Loop-carried dependencies analysis

% Check for loop-carried dependencies in your application o

nmary < Survey Report [ACETISUMSY IR 4, Annotation Repart '} Suitability Report

SiteMame SiteFunction Sitelnfo Loop-Caried Dependencies Strides Distribution Access Pattem
loop_site 6 rmain main.cppil3 @RAWT AWART Awaw | INSIBAELASEE Mied strides

Detected
dependencies

D Description Source Function Module Stats
EX17 Read [E main.cpp:22 m: test_1 R Hew
20 K 4= a[a]
21 k %= a[8]:
2z k -=al7]:
23 K += al6];
24 k *= a[5]:

EX18 Read main.cppi23main g
Fi pay Source lines with Read and
23 k 4= al6]: .
Write accesses detected

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.

Received recommendations to force vectorization of a
loop:

1. Mark-up loop and check for REAL dependencies
2. Explore dependencies with code snippets

In this example 3 dependencies were detected:

= RAW - Read After Write
= WAR - Write After Read
= WAW - Write After Write

This is NOT a good candidate to force
vectorization!

*Other names and brands may be claimed as the property of others.

4. Memory Access Patterns Analysis

Loop-Carried Dependencies Strides Distribution Access Pattern

No information available No information available
139%736% / 2T Mixed strides
100%/0%/0% | All unit strides

SiteName SiteFunction SiteInfo
loop_site 203 runCRawLoops runCRawLoops.coc1063 @ RAW:L
loop_site 139 runCRawLoops runCRawlLoops.coc622 No information available

loop._site 160 runCRawloops | runCRawloops.00c925 No information available

Memory Access Patterns
Stride v Type Source Modules Alignment
0:0:1 Unit stride runCRawLoops.coc637 cals.exe

plipll

#p23 @ 00 Unit stride runCRawloops.coc638 Icals.exe

=p30 @ -1575; -63;-26; 1; 0; 1; 25; 26; 63; 2164801 Variable stride runCRawl.oops.coc628 Icals.exe

Plip] (2] += B[31][1]:

Improve Vectorization
Memory Access pattern analysis

: are should | add vectorization and/o eading paralle *
g Survey Report
| Elapsed time: 8,525 || Vectorized || Mot Vectorized | FS l -'l Gllblas f AT 3 W
elect loops o
Function Call Sites and Loops [] Interest Loop Type irgor:;tim?
12,0205 38 Collapse Collapse

0,013s|
0,013s| 11,281

Vectorized (Body)

=14 [loop at fractal.cpp:179 in <lambdal>zop...
" senalized use ..

@ [loop at fractal.cpp:179 in <lambdal>zo ...
1> [loop at fractal.cpp:179 in <lambdal>zuo ... 'y 2 Data type co .. 0,000s 1 0,163s1 Peeled
i+ [loop at fractal.cpp:179 in <lambdal=zo... ¢ 2 Data type co.. 0,000s | 0,576s) Remainder
0,010s1 12,030 B Scalar

1> [loop at fractal.cpp:177 in <lambdal>uoper.. [& 2Datatypeco..

<

2.2 Check Memory Access Patterns

Iden nd explore complex
accesses for marke
reported problems.

- jLEI Run Memory Access Patterns analysis,
just to check how memory is used in

the loop and the called function

Optimization Notice
Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Find vector optimization opportunities

Memory Access pattern analysis

ory access patte 0 applicatio 0 Ad 0 0
ﬁ Refinement Reports

Site Name Site Function Site Info Loop-Carried Dependencies | Strides Distribution Access Pattern
loop_site_ 79 | operator() fractal.cpp:1?‘3 Mo information available 100% / < 1,0000% / .. Mixed strides
| All unit strides

loop_site 93 | operator()

loop_site 94 | operator()

All memory accesses are unlform with zero unit stride,
so the same data is read in each iteration
Memaory Access Patterns Report

(% o o We can therefore declare this function using the omp
mrie @ 0 =l syntax: pragma_omp declare simd uniform(xo

=P21 0 Unit stride ractal.copon

[T color_t color:
&5
13 fx0 = x0 - size_x / 2.0%£;
87 fyl = y0 - size_y / 2.0f
[i1:] fx0 = fx0 / magn + cx;
=p24 0 Unit stride fractal.cpp:62 fractal.exe
1 fx0 = x0 - size x / 2.0£7
a7 fvo = y0 - size vy / 2.0£;
[:1:] £x0 = fx0 / magn + cx;
L] £yl = fy0 / magn + cy;
70
P27 0 Unit stride fractal.cpp:69 fractal.exe
P30 0 Unit stride fractal.cpp:74 fractal.exe v

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Quickly Find Loops with Non-optimal Stride

Memory Access pattern analysis

Intel Advisor XE 2014

= Quickly identify loops that [Checkm _
are good, bad or mixed. SteName |Ste Function | Seaint

loop_site_54 operator()

| Loop-Carried Dependencies | Strides Distribution Access Pattern

fractal.cpp:164 @ Ne dependencies found Ne informaticn available Mo infermation available

loop_site_129 aperator() fractal.cpp:164 Mo information available 100% / 0% /0% All unit strides

= Unit stride memory accesses
are preferable.

» Find unaligned data

Memaory Access Patterns Report

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

1D ‘ ‘ Stride |Typa Source Modules | Alignment
EP1 [H] Parallel site information fractal.cpp:164 fractal.exe
Ep3 @ 0 Unit stride fractal.cpp:100 fractal.exe
98 1
99 #endif
100 int b = (int) (256 * mu);
101 int g = (b / 8):
102 int r = {g / 16):
Epd @ 0 Unit stride fractal.cpp:164 fractal.exe
162
163 for (int x = x0; x < xl; ++x) |
164 for (int y = y0; ¥ < yl; ++v) |
1865 fractal data array[x - x0][¥ - ¥0] = calc one pixel(x, ¥, tmp max iterations, tmp size x, tmp si
166 1
=ps @ o Unit stride fractal.cpp:164 fractal.exe
=ps @ 01 Unit stride fractal.cpp:165 fractal.exe
®EP7T @ 01 Unit stride fractal.cpp:165 fractal.exe
wpg @ 0 Unit stride fractal.cpp:60 fractal.exe
T T P . PR

NEW ROOFLINE ANALYSIS

Roofline model: Am 1 bound by VPU/CPU or by Memory?

128 — A
64
g 3
a) peak floating-point performance
8 16 ed T
i s
“ﬁ\N\
% 8 = o |
o
g pga\“ Lo ~ |
a) =
g s 2 —n D T < w
£&l 28 ~
’ = 2 Qy
FE] EF
. 25 H Q
[TE]
SE, &8, e
o - O
1/4 112 1 2 4 8 16

Operational Intensity (Flops/Byte)

What makes loops
A, B, C different?

Optimization Notice

Copyright © 2016, Intel Corporatio

Roofline ingredient #1
a. FLOPS and b. Memory throughput peaks

FLOP/S
DP FMA ~35 Peak GFLOP/sec

[Peaks (“Roofs") obtained via benchmarking]

given system (highly optimized benchmarks)

Al (FLOP/Byte)

»
>

A|::1i

Optimization Notice

Copyr gh t© 2016, Intel Corporation. All rights reserved. Intel Confidential
*Other and bra dmaybllmed hppyfh

Roofline ingredient #2
Axis Y: FLOP/S data

A
FLOP/S
41990+1 DP FMA ~35 Peak GFLOP/SGC DF Vector FMA Peak: 3.5266e+1 GFLOPS
L " i ’i— - CP. d Peak: 1.1217e+1 GFLOPS
= [Scaler Add Pezk: 27656 GFLOPS___
. 0® @ l
N oo Y coordinate = FLOP/S
,O'e(° ° ¢ measuyed for given point (loop or function)
o |
1.51.%3@-3.—"’0 waaw‘w' : i
D.DiI]'DZ 3.3I‘IEIE "

Optimization Notice

Copyright ©® 2016, Intel Corporation. All rights reserved. Intel Confidential
*Other names and brands may be claimed as the property of others.

Roofline ingredient #3:
Axis X: Arithmetic Intensity (Al)

Putting
A . 0.1-1.0 flops per byte Typically < 2 flops per byte 0(10) flops per byte
- memory utilization/demand A A A

- CPU utilization
altogether

,onglty

SpMv
BLAS12 Partice
Stencils (PDEs) Methods
FFTs, Dense
Al = # FLOP / # BYTE Lattice Boltzmann Spectral Methods Linear Algebra
Methods (BLAS3)
\ J o\)\
Y Y Y
01) O(log(N)) O(N)

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel Confidential

What makes loops
A, B, C different?

3 ingredients => Intel Advisor Roofline automation

4

4.19%0e+1

FLOP/S
DP FMA ~35 Peak GFLOP/sec

1. Roofs (benchmark-based)

2. FLOP/S (AVX-512 mask aware)
3. Al(Cumulative traffic)

DF FMA Peak: 3.5. +1 GFLOFS

181593

- 1 .
. :E, e - .-..' ! DP Vot Add Pesk: 1.1217e+1 GFLOPS
g >
. et __H_—::’gm _________ ... Sealarhdd] Pesk 27656 GFLOPS___
T °- |
'.o QQ% ¢’ O i
.- . !
-7 . . o OQ . :
%0 oo |
e ¢ !
® e o ® i
Each point corresponds to some loop or function with FP.
o]
Size (and color) of point = Time spent in loop/function
Al==1 | Al (FLOP/Byte)

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved. Intel Confidential
*Other names and brands may be claimed as the property of others.

T
33186

Roofline Automation in Intel Advisor 2017+
answer the questions

Performance {GFops/sec) & @ - X B

Roof Name Visible Selected
44145241

"" (| DRAM Bandwidth
| L1 Bandwidth
L2 Bandwidth
L3 Bandwidth

Scalar Add Peak
SP Vector Add Peak

DP Vector Add Peak
SP Vector FMA Peak
DP Vector FMA Peak

Loop Weight Represertation
[] Size [v] Color Visible

o [[men |

[-] Theshokdvas [02 |

o |

BEEETS

L @

OdOME BHEER
OO D DO "™

* Interactive mapping to source and performance profile
* Synergy between Vector Advisor and Roofline: FMA example

* Customizable chart

Copyright © 2016, Intel Corporation. All rights reserved. ‘ |nte| \ 25

*Other names and brands may be claimed as the property of others.

FLOP/s data measurement

1. Seconds are given by Survey run .

Median GFLOPs/s+ Arithmetic Intensity | Mask Utiliz... GBytes/s | GFLOP)
19] 2456 @ 0.125 19.6498 3.94489

Collect
m D 43 2351 =2 0125 63,29% 188111 0.3669:
19] 2,136 @D | 0.0795455 268513 2.5020f

19 7 1910&= |0.0681818 28011 1.0723
3 1.774@E8 00833333 21,2898 0.1128

D 4 119280 | 0.0666667 178726 01505

19 0@ 00681818 13.3635 0.0285

2. #FLOP is currently given by “Trip Counts” run

- Additionally provides cumulative memory traffic
and (AVX-512) Mask Register Utilization profile

, Summary & Survey Report Roofline Chart 3 Refinement Reports

Works from Nehalem to KNL, technology mostly
. . | Vectorization Advisor
I n Va rl a. n t to ta rget p latfo rm Vectorization Advisor is a vectorization analysis tool that lets you identify loops that will benefit most from vectorization.

@ Program metrics
Elapsed Time: 34,14s

- Do not depend on PMU capabilities e o e 1 A

Total GFLOP Count: 73 [Total GFLOPS: 2,13]
- Good FLOPS/Mask PMU doesn't exist for KNL © Joop mornes o
[’?me ?nB‘Jvectorized loops 13,89s (DD 41,83
Currently mapped to loops, functions, workload oo TR

@ Vectorization Gainfﬁcienq‘“"
Vectorized Loops Gain/Efficiency 4,25x ~534%
Program Theoretical Gain 2,30

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Cache-Aware vs. Classic Roofline e

Al = # FLOP / # BYTE

- Al_DRAM (often referred to as Operational Intensity)
128 1218, MAD. (Peak Performance)
. A ADD/MUL
= # FLOP/ # BYTES (CPU & Cache <~ DRAM) 6 :;' &&y B0 S
5157 C%G'l*’.ocoooo-oo
« - g § /} v 0. 98 @
DRAM traffic"-based g --;é"y--;l . iterations
E | ¢
- Variable for the same code/platform (varies with dataset size/trip count) £ n.s/‘2 . v
0.25p" @1t n APP:D -
- Can be measured relative to different memory hierarchy levels - cache RO RO Cperaiona iensty [FlopsDRAM Byl

level, HBM, DRAM

- AI_CARM MAD (Peak Performance I)
ADND/MUL
= # FLOP / # BYTES (CPU < Memory Sub-system) i
i}
- “Algorithmic”, “Cumulative (L1+L2+LLC+DRAM) traffic-based” g
E
]
- Invariant for the given code on given platform Eut:: 0 o APP-L! (Qache-aware)
| a . ‘ . ®_APP-D (QriginalCache-aware)
_ Typlcally Al_CARM < Al_DRAM 0.0078125 0.0625 D.SO ra'cn;tl nsi SEIO B, 256 2048 16384

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved. Intel Confidential ‘ |nt8| . 27

*Other names and brands may be claimed as the property of others.

Acknowledgments/References

Classic Roofline formulated by Williams, Waterman, Patterson, (Berkeley)
http://www.eecs.berkeley.edu/~waterman/papers/roofline.pdf

“Cache-aware Roofline model: Upgrading the loft” (llic, Pratas, Sousa, INESC-ID/IST, Thec Uni of Lisbon)
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Done by Intel Advisor and PathFinding Teams,
Roman Belenov, Igor Kaleturin, Julia Fedorova, Zakhar Matveev

in collaboration with Philippe Thierry and his colleagues.

Some implementation aspects were inspired by Intel SDE and Hugh Caffey M

To Register for Advisor “Roofline” Alpha Evaluation:
Send request to vector_advisor@intel.com

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://www.eecs.berkeley.edu/~waterman/papers/roofline.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf
mailto:Vector_advisor@intel.com

Intel® Parallel Studio XE

Faster code faster!

Intel Advisor is part of Intel Parallel Studio XE:

Vectorizing Compiler

Squeeze all the performance out of the latest instruction set Download Today

. . Google:
Threaded Performance Libraries “Intel Parallel Studio”

Pre-vectorized, pre-threaded, pre-optimized

High Level Parallel Models ﬁ{tgg <ALy

Productive solutions for thread, process & vector parallelism e i P,

en-us/articles/
intel-parallel-studio

Parallel Performance Profilers
Quickly discover bottlenecks and tune for high performance

Thread Debugger

Find and debug non-deterministic threading errors

Vectorization Optimization and Thread Prototyping
Data driven design tools help you vectorize & thread effectively

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/intel-parallel-studio-xe

Additional Resources

All links start with: https://software.intel.com/

Vectorization Guide: https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/

Explicit Vector Programming in Fortran:
https://software.intel.com/articles/explicit-vector-programming-in-fortran

Optimization Reports: https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-
optimization-reports

Beta Registration & Download: https://software.intel.com/en-us/articles/
intel-parallel-studio-xe-2016-beta

For Intel® Xeon Phi™ coprocessors, but also applicable:
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization

Intel” Composer XE User and Reference Guides:
https://software.intel.com/compiler 15.0 ug ¢
https://software.intel.com/compiler 15.0 ug f

Compiler User Forums: http://software.intel.com/forums

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/compiler_15.0_ug_c
https://software.intel.com/compiler_15.0_ug_f
http://software.intel.com/forums

(lntel) |
experience
what'’s inside”

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS™. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Configurations for Binomial Options SP

g M < Vectgrized Optimization Notice

g rwow Threaded Intel’'s compilers may or may not optimize to the same degree for non-Intel

5 % 100,000 microprocessors for optimizations that are not unique to Intel microprocessors.

29 50000 These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
g 1 79X optimizations. Intel does not guarantee the availability, functionality, or

g
g
g

effectiveness of any optimization on microprocessors not manufactured by

20,000 Intel. Microprocessor-dependent optimizations in this product are intended for
20000 Threaded use with Intel microprocessors. Certain optimizations not specific to Intel
__,— Vectorizec microarchitecture are reserved for Intel microprocessors. Please refer to the
5 Serial applicable product User and Reference Guides for more information regardin
2007 2009 201 2012 pPp P garding
e o™ s xeon g eon® ot xeon™ - the specific instruction sets covered by this notice. Notice revision #20110804

Harpertown Nehalem Westmere Sandy Bridge vy Bridge Haswell Performance measured in Intel Labs by Intel employees

Platform Hardware and Software Configuration

Unscaled
Core L1 Memory H/W
Frequenc Cores/ Num Data L1I L2 L3 Frequenc Memory Prefetchers HT Turbo O/S Operating Compiler
Platform y Socket Sockets Cache Cache Cache Cache Memory y Access Enabled Enabled Enabled C States Name System Version
Intel® Xeon™ Disable Fedora 3.11.10- icc version
5472 Processor 3.0 GHZ 4 2 32K 32K 12 MB None 32GB 800 MHZ UMA Y N N d 20 301.fc20 14.0.1
Intel® Xeon™ 1333 Disable Fedora 3.11.10- icc version
X5570 Processor 293 GHZ 4 2 32K 32K 256K 8MB 48GB MHZ NUMA Y Y Y d 20 301.fc20 14.0.1
Intel® Xeon™ 1333 Disable Fedora 3.11.10- icc version
X5680 Processor 3.33GHZ 6 2 32K 32K 256K 12 MB 48 MB MHZ NUMA Y Y Y d 20 301.fc20 14.0.1
Intel® Xeon™ E5 1600 Disable Fedora 3.11.10- icc version
2690 Processor 2.9GHZ 8 2 32K 32K 256K 20MB 64GB MHZ NUMA Y Y Y d 20 301.fc20 14.0.1
Intel® Xeon™ E5
2697v2 1867 Disable Fedora 3.11.10- icc version
Processor 27GHZ 12 2 32K 32K 256K 30MB 64GB MHZ NUMA Y Y d 20 301.fc20 14.0.1

Codename Disable Fedora 3.13.5- icc version

Y
%%W@{F and wo @qgs usﬁ in peréorma%cﬁéestgﬁ{ay Q@@peﬁl M@tirﬁi&qjdsfor p%k?maqq@pﬂy on In?tel microp@cessorsﬁerforn@nce 50 202.c20 14.01

tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. An
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
information go to http://www.intel.com/performance

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

http://www.intel.com/performance

